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A method for obtaining quantum trajectories from a discrete-variable representation computation of the
quantum potential is presented. The method exploits the linearity of the Schro¨dinger equation, deals smoothly
with the quantum potential singularities, and readily performs the time propagation up to fairly large total
elapsed times. A one-dimensional test of the generaln-dimensional formulation is included.

I. Introduction

Formulating quantum mechanics (QM) in terms of the
mathematical elements of classical mechanics (CM), namely,
positions, trajectories, velocities, action and forces, has remained
an exciting open question since the early quantum days. A
notorious attempt in this regard was performed by Madelung1

and de Broglie2,3 in the late 1920s and by Bohm in the early
1950s,4,5 who developed an exact reformulation of QM in terms
of the basic CM elements. As expected, the resulting structure
of the primary equations, trajectories, action, as well as forces,
show outstanding differences, as compared to the “traditional”
classical case.6 According to this formulation, the main differ-
ence between CM and QM resides in the force. Whereas in
CM the force is just the minus gradient of the potential at the
current particle’s location (i.e., the Newtonian force), in QM
the force is the usual Newtonian force plus a new term, the
quantum force, which arises from the time-dependent quantum
mechanical density. Thus, within this view, the QM dynamics
is seen to arise simply from a different potential than that
described by CM. In addition, it is a well-known result that
this mathematical formulation of QM, in terms of classical
elements, shows the same structure as the equations of classical
hydrodynamics. Hence, this QM formulation is often known
as the hydrodynamic formulation of QM (HQM).7 The primary
objects generated by the HQM equations (trajectories) are
actually termed quantum trajectories (QT) or, equivalently,
Bohmian trajectories (BT).6

An appealing aspect of the QTs is their deterministic nature,
even though physically orthodox conclusions are recovered only
after averaging over a sufficiently complete swarm of trajec-
tories. As expected, the HQM formulation does not eliminate
the intrinsic nonlocality of QM; it is actually embedded within
the quantum force. However, the very concept of trajectory may
be, at first sight, misleading in this regard, for it is obtained
from a scalar field dependent upon the instantaneous positions.
One has to recall the continuity equation, to infer that the

particle’s density is obtained after integration along the complete
configuration space, for each time increment. This view, based
on a joint analysis of a pair of coupled differential equations,
may be simplified. The authors have recently shown that the
quantum force can be formulated solely in terms of integrals
of the action function derivatives evaluated along the QT.8 This
result clearly shows that a QT, at any position and time, depends
not only on the initial position and time, as occurs in CM, but
also on the whole history of the trajectory, up to the current
position and time. Hence, this formulation might be regarded
as a novel form to address the nonlocality problem in purely
classical terms.

An important consequence of nonlocality emerges in the
computational evaluation of QTs. First, this nonlocality means
computational overload. The quantum force is time-dependent,
so it has to be updated at each time increment. Moreover, it is
obtained from the particle’s density, so it requires a full
configuration space integration.9 Second, the quantum force
expression is prone to singularities whenever the density shows
a nodal point in configuration space. These difficulties are
manifest either in the original formulation of the quantum force,
as proposed by Bohm,4,5 or in the author’s integral expression.8

Nevertheless, the last decades have witnessed outstanding
theoretical and algorithmic advances concerning QT computa-
tions.9-15 The QT method (QTM) has been applied, for instance,
in molecular photodissociation,16 tunneling in a double well
potential,17 scattering of quantum trajectories from an Eckart
barrier,10 reflections on a downhill ramp potential,13quantum
resonances in one-dimensional chemical reactions,18 as well as
other interesting physical chemistrys chemical physics prob-
lems.19 The contributions of Bob Wyatt in this field cannot be
overemphasized. Wyatt triggered a new impetus, starting in
1999, when he and his coworkers proposed a general technique,
and several variants of it, to numerically solve the hydrodynamic
equations of motion. This method is based on the association
of bohmian particles to discretized fluid elements, where each
fluid element follows the influence of both classical and quantum
forces.10 A previous, close algorithm is due to Weiner and co-
workers,20,21 which resorts to the Lagrangian hydrodynamic
method. New, more recent improvements have been introduced
in the discretized fluid elements technique. For instance,
distributed approximated functionals on the grid are used to

† Part of the special issue “Robert E. Wyatt Festschrift”.
* To whom correspondence should be addressed. E-mail: jmbofill@

ub.edu.
‡ Departament de Quı´mica Fı́sica i Centre especial de Recerca en Quı´mica
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facilitate the computation of the derivatives that appear in the
equations of motion.22 In addition, this approach has been
applied to both uniform and nonuniform grids. However, a main
difficulty in this algorithm is the “edge problem”, which may
be stated as the difficulties in keeping the simultaneous accuracy
of the fit and derivatives near the grid edges.

A very recent variant for the computation of QTs is that of
Goldfarb et al.23 These authors provide a derivation of the
equations of bohmian mechanics with the aid of plane waves
and complex actions.24 However, the QTs thus obtained are
defined in the complex plane. Consequently, even though the
computational efficiency may be superior and full quantum
mechanical results are obviously reproduced, the nature of the
method somewhat departs from the original spirit of the HQM,
which resorts to just classical quantities.

In this paper, a new method for extracting the hydrodynamic
quantum trajectories from the theory is presented. The method
is rooted to the core of the HQM theory.6 It is then useful, in
this regard, to recall the original postulates as originally stated
by Madelung,1 de Broglie,2,3 and Bohm:4,5(a) every physical
system is formed by a set of point particles that moves in space
and time under the guidance of a complex wave function; (b)
the wave function satisfies the time-dependent Schro¨dinger
equation (TDSE); (c) the velocity of each point particle, which
in fact characterizes the corresponding QT, is equal to the
derivative with respect to the position of the real phase function
of the complex wave function. (d) the probability to find a
particle of the ensemble corresponding to the physical system,
at any position and time, is given by the square modulus of the
wave function at this position and time.

One may conclude, from a strict point of view, that the HQM
model does not eliminate the complex wave function from the
theory. On the contrary, it is actually its first basic element.
The complex wave function, along with positions, trajectories,
action, forces, and densities, conforms to the whole set of
elements that appear in this alternate but rigorous QM formula-
tion.

One may ask whether the above ontological statements may
be translated into an operational procedure. In other words, is
it possible to use the wave function as a first step to compute
densities and afterwards get the evolution of the physical system
under the HQM model? The prospective answer may be
supported by the fact that there exist a variety of stable
techniques to solve the TDSE,25 which provide the complex
wave function and, in turn, the real phase function. Moreover,
well-known techniques are available to obtain the complex wave
function as linear combinations of analytical expressions for
the real phase function. Thus, the position derivative of this
phase function should provide the velocity of the trajectory in
a straightforward manner. Once this velocity is available, one
should get the corresponding trajectory with no difficulties using
some standard integration techniques. From the computational
point of view, this procedure is thought to be a feasible and
stable integration technique of QTs because analytic expressions
are used through the whole process.

One of the methods widely used to integrate the Schro¨dinger
equation (SE), which appears to satisfy the above requirements,
is the discrete variable representation (DVR) method, formulated
in the context of molecular systems by Light and co-workers,26

which in turn was based on earlier works by Harris et al.,27

Dickinson and Certain,28 and Shizgal and Blackmore.29 Colbert
and Miller derived, in detail, an interesting class of DVR, usually
termed “sinc DVR”.30 In particular, the authors provided analytic
expressions for the kinetic energy operator in terms of the grid

increment after performing, in closed form, the summations
implicit in the standard DVR formulation for a primitive basis
consisting of particle-in-a-box eigenfunctions.

In the present study, the sinc DVR is introduced in the TDSE.
A very simple matrix algorithm results. Then, the separation of
real and imaginary parts in the complex wavefunction leads to
a systematic derivation of the bohmian particle equations of
motion in terms of the basic DVR ingredients. Consequently,
we have been able to formulate a DVR-based algorithm for the
integration of QTs, where each bohmian particle is initially
associated to a discrete position of the DVR mesh. Finally,
integration algorithms are introduced to follow the particle’s
time-dependence on the DVR grid. The method is especially
suited for dealing with the quantum potential singularities, for
no explicit use is made of the quantum potential and, in addition,
the quantities computed at the grid elements are refreshed at
each time increment.

To our knowledge, it is the first attempt of producing QTs
from the wavefunction. The main equations are thus derived,
computationally implemented, and tested for a benchmark, one-
dimensional system. The scaling of the method, as presently
formulated, is typical of basis set methods, so improving the
scaling performances of presently existing methods has not been
an issue in the present work. One may expect alternate
formulations of the DVR technique to arise for multidimensional
systems, such as the time-dependent correlated DVR,31,32 to
properly address the exponential growth of the necessary
computational effort.

This paper is organized as follows. In section II we outline
a brief summary of the DVR method. Section III introduces, in
detail, the proposed algorithm to evaluate QTs, and some
computational results are reported in section IV. Finally, section
V concludes this paper.

II. The DVR Technique

In this section we briefly summarize the definition and
properties of the DVR functions and its application. This
technique has been reviewed extensively many times.33,34

However, making the paper self-contained demands a brief
summary of the essential features, which are shown below. The
technique is based on the use of continuous functions, satisfying
the properties of being position eigenfunctions associated to a
grid. These functions become strongly localized in the points
of the grid once a primitive basis is linearly transformed to
diagonalize the position operator. Such functions define a DVR
that was popularized in the realm of molecular physics some
time ago by Light and co-workers.26 One form of starting the
derivation consists in specifying a set of orthogonal polynomials
({Pn(x)}) along with a weighting function (w(x)) such that we
get eq 1.

Following Light,26,33,34we introduce the so-called finite basis
representation (FBR) functions ({φn(x)}), where φn(x) )
(w(x))1/2Pn(x). With this set of functions, the overlap integrals
are evaluated exactly in aN-point Gaussian quadrature
({xµ}µ)1

N );

∫xi

xf Pm(x)w(x)Pn(x) dx ) δmn (1)

∫xi

xf
φm(x)φn(x) dx )

∑
µ)1

N wµ

w(xµ)
φm(xµ)φn(xµ) ) ∑

µ)1

N

wµPm(xµ)Pn(xµ) ) δmn (2)
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where {wµ}µ)1
N is the set of quadrature Gaussian weights.

Now we can calculate the coordinate matrix of the FBR
basis functions in an exact manner in the same quadrature
because theN-point Gaussian quadrature is exact up to the 2N
order;

where the superscript T indicates transposed. In matrix form,
eq 3 can be written asX ) TTXDT, whereXD is the diagonal
matrix, and the diagonal elements are{xµ}µ)1

N , the set of DVR
points. Notice that in eq 2,TTT ) I , where matrixI is the unit
matrix of dimensionN. This fact permits us to rewrite the latter
matrix expression as an eigenvalue equation,XTT ) TTXD.
Now, using the definition of theT matrix given in eq 3,
we introduce in a natural way the definition of DVR functions
({uµ(x)}µ)1

N ) of the grid of DVR set of points ({xµ}µ)1
N ), namely

eq 4.

Because theT matrix is a unitary (orthonormal if the functions
are real) matrix, we obtain one of the important properties of
the DVR functions (eq 5).

The above set of properties of DVR functions are obtained by
considering both eqs 4 and 5. The DVR functions are continuous
and differentiable functions with respect tox everywhere in the
domainxi e x e xf. In addition, if we consider a DVR function,
sayuµ(x), then this function takes a value of zero at all DVR
points except in both the DVR point (xµ) and the rest of the
domain. Finally, using eq 5 we show that the set of DVR
functions are orthogonal (eq 6).

In practical terms, the selection of the FBR basis set depends
on the boundary conditions of the problem under consideration.
In fact, the accuracy of the Gaussian quadrature, which is the
basis of the present derivation, is given for periodic functions
and an equally spaced grid. In this case,w(x) ) 1 andwν )
L/(2N + 1), whereL ) xf - xi is the length of the domain, and
2N + 1 is the number of basis functions. Notice that the set of
DVR points ({xµ}µ)1

2N+1) are defined in eq 7.

The elements of theT matrix transformation, defined in eq 3,
now take the values shown in eq 8.

In this way, any type of function (f(x)) defined in the domain
xi e x e xf can be expanded by using the DVR basis functions;

where, using eq 5, we can evaluate the set of expansion
coefficients, gµ ) (wµ/w(xµ))1/2 f(xµ). If the function to be
expanded is defined in aM-dimensional domain with periodic
boundary conditions (f(x)) where, xT ) (x1, ..., xM), then
M-dimensional DVR functions are formed as a product of one-
dimensional DVR functions,{uµ

J(xJ)}µ)1
NJ , for ∀ J ) 1, ..., M,

and are used to build the expansion shown in eq 10;35

where {gµ...ν}µ)1,...,ν)1
N1,...,NM , is the set of expansion coefficients.

Proceeding as before, each coefficient takes the value shown
in eq 11;

wherexµ...ν
T ) (xµ

1, ...,xν
M). Finally, because the DVR functions

are continuous and analytically defined in all of the domain, as
given in eq 4, then we can evaluate the derivatives of the
function f(x) expanded in the sets of DVR basis functions,
namely eq 12, at any point of the domain.

At a DVR point, sayxR...â...γ, the above partial derivative takes
the value shown in eq 13.

An important class of DVR functions, used in the present
work, is that proposed by Colbert and Miller.30 It may be
regarded as an infinite order (finite difference on infinite uniform
grids) formulation of the Hamiltonian. This formulation is
based on the use of particle-in-a-box functions. The correspond-
ing representation on the grid is such that the number of
functions goes to infinity as the range becomes infinite. In this
case, because the grid is equally spaced,w(xν

J) ) 1, wν
J ) LJ/

(2NJ + 1) ) ∆xJ for ∀ν, ∆xJ is the difference for theJ

ømn ) ∫xi

xf
φm(x)xφn(x) dx ) ∑

µ)1

N wµ

w(xµ)
φm(xµ)xµφn(xµ) )

∑
µ)1

N

φm(xµ) x wµ

w(xµ)
xµ x wµ

w(xµ)
φn(xµ) ) ∑

µ)1

N

Tmµ
T xµTµn (3)

uµ(x) ) ∑
n)1

N

T nµ
T

φn(x) ) ∑
n)1

N

φn(xµ) x wµ

w(xµ)
φn(x) (4)

uµ(xν) ) ∑
n)1

N

T nµ
T

φn(xν) ) ∑
n)1

N

φn(xµ) x wµ

w(xµ)
φn(xν) )

∑
n)1

N

T nµ
T Tνn xw(xν)

wν
) δµν xw(xν)

wν
(5)

∫xi

xf uµ(x)uν(x) dx )

∑
R)1

N wR

w(xR)
uµ(xR)uν(xR) ) ∑

R)1

N

δµRδνR ) δµν (6)

xµ ) L
2N + 1

(µ - N - 1) µ ) 1,...,2N + 1 (7)

Tµn ) x L
2N + 1

φn(xµ) (8)

f (x) ) ∑
µ)1

N

gµuµ(x) (9)

f (x) ) ∑
µ)1

N1

... ∑
ν)1

NM

gµ...νuµ
1(x1)... uν

M(xM) (10)

gµ...ν ) ( wµ
1

w1(xµ
1))1/2

‚‚‚ ( wν
M

wM(xν
M))1/2

f (xµ...ν) (11)

∂f (x)

∂xJ
)

∑
µ)1

N1

... ∑
τ)1

NJ

... ∑
ν)1

NM

gµ...τ...νuµ
1(x1) ‚‚‚

duτ
J(xJ)

dxJ
‚‚‚ uν

M(xM) (12)

∂f(x)

∂xJ |x)xR...â...γ
)

(w1(xR
1)

wR
1 )1/2

‚‚‚(∑τ)1

NJ

gR...τ...γ

duτ
J(xJ)

dxJ |xJ)xâ
J) ‚‚‚ (wM(xγ

M)

wγ
M )1/2

(13)
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coordinate, andLJ ) xf
J - xi

J is the length of the domain of this
J coordinate. The final DVR functions obtained in this way form
an infinite basis of the following functions.

where, in this case, we takexµ
J ) µ∆xJ, µ ) 0, (1, (2, ...;

with the sinc basis functions introduced in eq 14, the quantum
Hamiltonian takes a very simple structure, namely eq 15;30

whereV(x) is the potential function andK xγ
Ixκ

I is an element of
the matrix kinetic operator,

wherem is the mass of the particle, andp is Planck’s constant.
In practical applications it is not possible to use an infinite basis
because we have only a finite set of DVR points. In this situation
the Hamiltonian does not possess the same simple mathematical
structure than that given in eqs 15 and 16. However because of
its simplicity in both the structure of the basis functions and
the Hamiltonian represented in this basis, we take this type of
DVR as a basic tool for evaluating the QTs.

III. The Integration of Bohmian Trajectories Using a
Discrete Variable Representation Algorithm

In this section we present the mathematical basis for the BTs,
or QTs, integration technique. We start with a brief discussion
of the main HQM equations, because it is the required starting
point of the present formulation. The complex wave function
Ψ(x, t) can be expressed in polar form (eq 17).

As it is known, this expression for the complex wave function
leads to a real amplitude function that takes the form of eq 18a,

whereas the real phase function is given by eq 18b.

The wave function given in eq 17 is taken as the solution of
the Schro¨dinger equation.

Now, inserting eq 17 into eq 19 and separating into real and
imaginary parts, we obtain the field equations for the real
functionsR(x, t) andS(x, t).1-5,7 The real part results in eq 20a,
which is the so-called the Hamilton-Jacobi equation.6

The imaginary part in the expression (eq 20b) is the conserva-
tion, or continuity, equation.6

According to the coupled partial differential equations (20a,b),
the real functionsR(x, t) andS(x, t) are codetermined by one
another. Now we introduce a point particle of massm that
follows the trajectoryx ) x(t). To this aim, we assume that at
each point of space and time the tangent vector to the particle
trajectory passing through this point (dx/dt |x)x(t)) is proportional
to the vector field (∇xS(x, t)) with the proportional factor 1/m.
These trajectories are orthogonal to the surfacesS(x, t) )
constantand may be found by integration of the differential
equation given by eq 21.

Solving eq 21 requires setting the initial positionx0 ) x(t0).
Because the tangent vector of the trajectory, at each point of
the trajectory, is proportional to a gradient vector that belongs
to the field of gradient vectors of the surfaceS(x, t), we propose
(1) to obtain the real phase function (S(x, t)) through eqs 17-
19 and (2) to get from this surface the field of gradient vectors,
∇xS(x, t). Finally, the corresponding set of trajectories is
obtained by integration of eq 21 rather than solving the pair of
coupled partial differential equations (20a,b). With this strategy,
we might avoid solving a system of partial differential equations,
which is very often plagued with numerical instabilities, as
mentioned in the introduction.

When the quantum HamiltonianH(x), given by eq 19, is time-
independent, it is well-known that the wave function at timet
(Ψ(x, t)) is derived from the wave function at the initial timet0
(Ψ(x, t0)) through the operator action shown in eq 22;

which is the integrated form of eq 19.36 According to eq 22,
Ψ(x, t) may be known if we expand bothΨ(x, t0) and the
exponential term in a series of eigenfunctions ofH(x). Let us
assume that the spectrum of theH matrix associated to theH(x)
operator, in a given representation, is discrete and nondegen-
erate, and we denote such by{En, vn}, the set of eigenpairs.
Moreover, if f(t) and f(t0) denote the complex wave functions
Ψ(x, t) and Ψ(x, t0) in this representation, respectively, then
eq 22 must be written as shown in eq 23.

∂S(x, t)
∂t

+

∇x
TS(x, t)∇xS(x, t)

2m
+ V(x) - p2

2m

∇x
2R(x, t)

R(x, t)
) 0 (20a)

∂R2(x, t)
∂t

+ ∇x
T(R2(x, t)

m
∇xS(x, t)) ) 0 (20b)

dx
dt |x)x(t)

) (1
m)∇xS(x, τ)| x ) x(t)

τ ) t
(21)

Ψ(x, t) ) exp(- i
p

H(x)(t - t0))Ψ(x, t0) (22)

uµ
J(xJ) f sincµ(x

J) )
sin (π(xJ - xµ

J)/∆xJ)

π(xJ - xµ
J)

(14)

HxR
1xâ

1,...,xµ
Mxν

M )

∑
I)1

M

K xγ
I xκ

I ∏
J)1
J*I

M

δxη
Jxε

J + V(xR...µ) ∏
J)1

M

δxη
Jxε

J (15)

K xγ
I xκ

I )
p2(-1)γ-κ

2m∆xI {π2/3 γ ) κ

2/(γ - κ)2 γ * κ} (16)

Ψ(x, t) ) R(x, t) exp( i
p

S(x, t))
) R(x, t) cos(S(x, t)/p) + iR(x, t) sin(S(x, t)/p)

) Ψreal(x, t) + iΨimag(x, t) (17)

R(x, t) ) (Ψreal
2(x, t) + Ψimag

2(x, t))1/2 (18a)

S(x, t) ) p arctan(Ψimag(x, t)

Ψreal(x, t) ) (18b)

ip
∂Ψ(x, t)

∂t
)

(- p2

2m
∇x

2 + V(x))Ψ(x, t) ) H(x)Ψ(x, t) (19)
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If we take theH matrix given in eq 15, then the time evolution
equation (23) is represented in the sinc DVR basis as shown in
eq 24.

where NT ) N1 + ... + NJ + ... + NM, zR...â...γ )
(w1/w1(x1

R))1/2...(wJ/wJ(xJ
â))1/2...(wM/wM(xM

γ))1/2, and we have
assumed that the DVR points along each coordinate are equally
spaced. In eq 24,{E¥, L¥}¥)1

NT represents the set of eigenpairs
of the Hamiltonian matrix given in eq 15. Substituting eq 17 in
the right-hand part of eq 24, after some rearrangement we obtain
eq 25;

where the explicit form of the elements of the time-dependent
vectors,a(t) andb(t), is given by eqs 26a,b;

whereS¥
0(xµ...τ...ν, t) ) S(xµ...τ...ν, t0) - E¥(t - t0). Finally, from

eq 25 we have the expressions for both theR(x, t) and theS(x,
t) functions, eqs 27a,b, respectively.

Notice again that the tensorscR...â...γ(t) anddR...â...γ(t) are only
functions of t. The derivative ofS(x, t) with respect to a
coordinate, sayxJ, will correspond to an element of the∇xS(x,
t) vector, namely eq 28.

Now, taking into account eq 21 and eq 28, one obtains the
QT by integration. We propose, through the integration process,
the following procedure: let us assume that a point of the
trajectory is x0 ) x(t0). Then the trajectory itself can be
represented by a Taylor series int expanded aboutx0;

where eq 21 has been used. In eq 29 the term d(∇xS(x, τ))/dt,
at the pointx ) x(t) andτ ) t, is evaluated as shown in eq 30;

f(t) ) exp(-
i

p
H(t - t0))f0 )

∑
n)1

vn exp(-
i

p
En(t - t0))vn

Tf0 )

∑
n)1

vn{cos(En(t - t0)/p) - i sin(En(t - t0)/p)}vn
Tf0 (23)

Ψ(x, t) ) ∑
R)1

N1

...∑
â)1

NJ

...∑
γ)1

NM

∑
¥)1

NT

{uR
1(x1)... uâ

J(xJ)...uγ
M(xM)zR...â...γLR...â...γ,¥ exp(-

i

p
E¥(t - t0)) ×

∑
µ)1

N1

‚‚‚ ∑
τ)1

NJ

...∑
ν)1

NM

L¥,µ...τ...ν
T Ψ(xµ...τ...ν, t0)} (24)

Ψ(x, t) ) ∑
R)1

N1

‚‚‚ ∑
â)1

NJ

‚‚‚ ∑
γ)1

NM

uR
1(x1)... uâ

J(xJ)...

uγ
M(xM)zR...â...γ ∑

¥)1

NT

LR...â...γ,¥(a¥(t) +ib¥(t)) )

∑
R)1

N1

‚‚‚ ∑
â)1

NJ

‚‚‚ ∑
γ)1

NM

uR
1(x1)... uâ

J(xJ)...uγ
M(xM)zR...â...γ(cR...â...γ(t) +

idR...â...γ(t)) (25)

a¥(t) ) ∑
µ)1

N1

‚‚‚ ∑
τ)1

NJ

‚‚‚

∑
ν)1

NM

L¥,µ...τ...ν
T R(xµ...τ...ν, t0) cos(S¥

0(xµ...τ...ν, t)

p
) (26a)

b¥(t) ) ∑
µ)1

N1

‚‚‚ ∑
τ)1

NJ

‚‚‚

∑
ν)1

NM

L¥,µ...τ...ν
T R(xµ...τ...ν, t0)sin (S¥
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where eq 21 has been used. The term in brackets appearing in
the right-hand side part of eq 30 is computed by derivation of
eq 28 with respect tox. Finally, the term∂S(x, τ)/∂t, which
represents the negative energy of the trajectory at the pointx
) x(t) andτ ) t is obtained by derivation of eq 27b with respect
to t (eq 31);

where

and

At each integration step we take the time intervalt - t0, such
that the value of the derivative (m dx(t)/dt) obtained by
derivation of eq 29 with respect tot coincides, until some
tolerance, with the actual value of the derivative of the function
S(x, t) with respect tox evaluated at this new point using eq
28. This procedure provides the desired solution in a manner
such that numerical stability is taken into account.

IV. Numerical Implementation

Equations 26-29 provide the basic formulas for the numerical
implementation of the present algorithm. These formulas have
been translated into a computational code. The proper numerical
implementation requires, however, providing additional details,
mainly concerning the actual computation of trajectories (i.e.,
the position as a function of time).

The practical implementation starts discretizing the full
configuration space. This discretization is identical to that
performed for the computation of the quantum mechanical
density, thus covering the whole configuration space. The
computation of quantum trajectories requires considering an
initial swarm of bohmian particles (i.e., the grid positions are

ascribed to a bohmian particle, but only to those positions where
the density at the initial time is different from zero). In practice,
this means that bohmian particles are given to discrete points
where the associated density is higher than a tolerance value.

Next, an initial momentum is given to each bohmian particle.
These momenta are obtained from the computation of the time
zero-quantum flux, associated to our quantum mechanical initial
state. This quantity is very easy to compute because it is a by-
product of the original DVR method, as applied to the
computation of the time-dependent wave function. Figure 1
shows the results of the computation of this quantum flux for
a system described by a coherent state, minimum uncertainty
initial state. Thet0 local flux is described by a linear function,
whose slope is proportional to the central momentum of the
initial wavepacket. It is thus a function, which is consistent with
common practice in previous studies with quantum trajectories.

The following step consists of applying eqs 26-29 so that
the positions are updated by the corresponding time increments.
Each initial position, as stated above, corresponds to a DVR
position. However, as a result of the action of the equations of
motion, the following position will hardly correspond to any
discretized point of the DVR grid. Consequently, the complete
set of quantities, which are required for the computation of the
position time increment, have to be interpolated from the
information available at each DVR grid position.

At this point, any of the interpolation procedures available
in the literature might be of use. Among them, one especially
suited is the DVR-FBR transformation of the wavefunction
amplitude, because the primary quantity computed here is the
wavefunction. Nevertheless, it has been shown that in simple
applications a linear interpolation algorithm between successive
DVR points suffices. It is important to note, in this regard, that
the DVR grid is time-independent (i.e., is fixed through the
initial conditions) concerning the grid increment and the grid
size. Then, the bohmian particles are considered to evolve on
the grid. A possibility is to switch to time-dependent, moving
grids, but this is left for future work.

In practice, the integration starts by selecting a given DVR
point, which initially coincides with a bohmian particle. Then,
the quantities in eq 29, up to second-order, are computed for a
given time increment. This means computing the time-dependent
wave function in terms of their related quantities as shown
above. Because these quantities develop the original wavefunc-
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Figure 1. Statement of the problem used as a numerical test. An initial
coherent-state wavepacket (red trace) is set to collide against a square
potential energy barrier (filled black trace). The wavepacket’s central
momentum is 15 a.u., whereas the mass is one-fifth of the proton mass.
The collision proceeds from left to right. The blue trace corresponds
to the initial velocity (right vertical axis), as a function of position (i.e.,
in practice, the initial condition for each quantum trajectory). This
velocity is calculated (see text) from the time zero flux divided by the
t0 density.
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tion in terms of a large summation of simple terms, the time-
dependence is expected to be described accurately. Actually,
as the original basis increases in size, this time-dependence will
become more accurate (i.e., a better description of the problem
is given by the DVR grid).

Figure 2 shows an application of the present technique,
namely a collision of a coherent state wavepacket against a
square potential energy barrier. It is thus an open, scattering
problem, which is usually more demanding than standard,
bounded systems. A swarm of 10 quantum trajectories, sampling
the initial wavefuntion density around its maximum, is shown
for illustrative purposes to confirm that the present new
technique leads to the correct results. Results of Figure 2, leading
to converged results, have been obtained after dividing the whole
configuration space into 200 discretized, equally spaced posi-
tions. Each trajectory is integrated individually, from nonlocal
information concerning the wavefunction amplitude and its real
phase, the action, as well as their spatial and temporal deriva-
tives. The time spanned corresponds to 100 atomic time units.
It has been computed using a time increment of 0.5 au, so that
the whole trajectory required just 200 points during the
integration process.

V. Conclusions

A new method for obtaining quantum trajectories has been
presented. The derivation has started from a revision of the basic
postulates of the bohmian mechanics because the method is
considered to be firmly rooted to them. In particular, the starting
point is the fact that a wavefunction is associated to a
deterministic time-evolution of the system. The wavefunction
amplitude-based computation of trajectories benefits from the
linearity of the Schrodinger equation, an advantage that is fully
exploited because the final equations are obtained after a
systematic use of an initial linear expansion. This method is in
contrast to those based on the wavefunction density, which do
not permit tracking of the linearly expanded wavefunction phase
up to the final equations of motion.

Next, the paper discusses how the DVR may provide an
adequate framework for the formulation of the method as an

efficient manner of translating the original linear expansion to
a practical computation of discrete quantities, in terms of discrete
increments both in time and position.

The derivation develops the wavefunction in terms of its real
and imaginary parts and thereafter introduces the DVR expan-
sion on it. It ultimately leads to a set of linear equations in which
the real and imaginary parts are evaluated separately, in terms
of primary DVR quantities.

The time propagation is considered afterwards. This is
expressed here in terms of the basic guidance equation of
bohmian mechanics, incorporated within the present expanded
formulation in terms of the DVR basis. It results in a basic
appearance of the action function as well as its position and
time derivatives, which are performed in a very simple manner
in actual applications, thanks to the DVR expansion. These
quantities are computed exclusively on the original DVR grid.
However, they are required at positions that fall within DVR
points. In actual applications where the grid is sufficiently fine-
grained, one may simply linearly interpolate the grid information
to update for intergrid quantities. In more demanding, multi-
dimensional cases, one has to resort to more sophisticated
interpolation algorithms, such as the DVR-FBR transformation.
This is why the present DVR derivation has insisted in its
relation to the FBR.

The initial conditions for the bohmian trajectories are chosen
so that the local quantum flux is computed on the DVR grid.
This provides a natural method for selecting the initial momenta
for the bohmian particles for an initial coherent state wavepacket,
which fully coincides with common practice when computing
quantum trajectories by other methods. Finally, the feasibility
of the method has been made explicit by the computation of
quantum trajectories for a collision of a coherent state wave-
packet against a square potential energy barrier. Results fully
coincide with those from other methods.
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